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ABBREVIATIONS

As used in this report, the following abbreviations/acronyms have the meanings indicated

AbbreviAtion  MeAning 
ACGIH  - -- -- Amer�can Conference of Governmental Industr�al Hyg�en�sts
BSA - -- -- -- -- Bov�ne serum album�n
DPBS - -- -- -- Dulbecco’s phosphate buffered sal�ne
DPBS++ - -- -- DPBS w�th calc�um and magnes�um
EPA  -- -- -- -- Env�ronmental Protect�on Agency
FFU  -- -- -- -- Fluorescent focus un�ts
HP  - -- -- -- -- Hydrogen perox�de
MDCK  - -- -- Mad�n-Darby can�ne k�dney
OSHA  -- -- -- Occupat�onal Safety and Health Adm�n�strat�on
PEL  -- -- -- -- Perm�ss�ble exposure l�m�t
RH  - -- -- -- -- Relat�ve hum�d�ty
SARS  - -- -- -- Severe acute resp�ratory syndrome
TEG -- -- -- -- Tr�ethylene glycol
TLV®  - -- -- -- Threshold L�m�t Value
UV  - -- -- -- -- Ultrav�olet
UVGI  -- -- -- Ultrav�olet germ�c�dal �rrad�at�on

MATHEMATICAL SYMBOLS

As used in this report, the following symbols have the meanings indicated

SyMbol MeAning 
f -- -- -- -- -- -- Fract�on of v�ruses rema�n�ng act�ve

Ulog  - -- -- -- Mean of the logar�thms of U
oUlog  -- -- -- Mean of the logar�thms of U

o

n  - -- -- -- -- -- Number of log reduct�ons
n  - -- -- -- -- -- Average number of log reduct�ons
p

TEG
  -- -- -- -- Part�al pressure of TEG �n a�r

P  - -- -- -- -- -- Amb�ent pressure
o

TEGP  -- -- -- -- Vapor pressure of pure l�qu�d TEG 
Us log  -- -- -- -- Standard dev�at�on of log U

oUs log -- -- -- -- Standard dev�at�on of log U
o

ns   -- -- -- -- -- Standard dev�at�on correspond�ng to n  
T  -- -- -- -- -- Temperature
U  -- -- -- -- -- Number of FFU per volume of r�nsate from an exposed coupon
U

o- -  - -  - -  - -  - -  - -  - -  - -  - -  - -
Number of FFU per volume of r�nsate from an unexposed coupon

TEGy  -- -- -- -- TEG mole fract�on �n the gas phase
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inActivAting influenzA viruSeS on SurfAceS uSing Hydrogen Peroxide 
or trietHylene glycol At low vAPor concentrAtionS

INTRODUCTION 

Background
Prevent�ng the spread of smallpox, �nfluenza, SARS, 

and other v�rus-caused d�seases on commerc�al a�rplanes 
and other publ�c venues �s a s�gn�ficant challenge for 
the publ�c health commun�ty (Musher 2003; Olsen, 
Chang, Cheung, et al. 2003). Transfer of v�ruses from 
an �nfected �nd�v�dual to an un�nfected one can occur 
through var�ous modes of transm�ss�on: 1) by d�rect 
contact, 2) v�a fom�tes (�nan�mate objects capable of 
carry�ng �nfect�ous v�ruses), 3) from the d�rect spray 
of large droplets from an �nfected person, and 4) from 
droplet nucle�, wh�ch are very small dr�ed droplets that 
can stay suspended �n the a�r for long per�ods of t�me 
(Roy & M�lton 2004). In th�s study, we evaluated the 
efficacy of var�ous relat�vely gentle methods for decon-
tam�nat�ng fom�tes.

Any of the exposed surfaces �n a�rplanes or other 
veh�cles used for publ�c transportat�on can become con-
tam�nated w�th �nfect�ous v�ruses and be respons�ble for 
d�sease transm�ss�on. In th�s study, we d�s�nfected surfaces 
contam�nated w�th �nfluenza A v�ruses, whose subtypes 
may have the potent�al to cause a pandem�c propagated 
worldw�de by commerc�al travel. It may not be necessary 
to ster�l�ze an a�rplane cab�n; s�gn�ficant reduct�on �n the 
potent�al for d�sease transm�ss�on would be benefic�al. 

Select�on of spec�fic decontam�nat�on methods used 
�n th�s study was based pr�mar�ly on three cr�ter�a: 1) the 
method would not be expected to cause damage to the 
mechan�cal components or av�on�cs of the a�rplane, 2) the 
method would leave no potent�ally harmful res�due, and 3) 
the method would requ�re a relat�vely br�ef per�od of t�me, 
so that an a�rplane or other means of publ�c transportat�on 
could be put back �nto serv�ce qu�ckly. We chose three 
methods that fulfill these cr�ter�a: 1) relat�vely low vapor 
concentrat�ons (<100 ppm) of hydrogen perox�de (HP), 
2) very low vapor concentrat�ons of tr�ethylene glycol 
(TEG), and 3) thermal decontam�nat�on us�ng heated 
a�r. The efficacy of the decontam�nants HP and TEG 
�s the subject of th�s report. A separate report d�scusses 
thermal decontam�nat�on. As a basel�ne for compar�son 
and because of �ts �mportance, the length of t�me that 
�nfluenza v�ruses rema�n act�ve on surfaces under amb�ent 
cond�t�ons was also determ�ned. 

We el�m�nated many other decontam�nat�on methods 
because they d�d not adhere to the des�red cr�ter�a. Spec�fi-
cally, methods that rely on chlor�ne d�ox�de, formalde-
hyde, ethylene ox�de, and methyl brom�de were deemed 
l�kely unacceptable due to the�r potent�al for damage to 
the a�rplane and the�r tox�c�ty to humans. In add�t�on, 
desp�te �ts effect�veness for �nact�vat�ng v�ruses and bac-
ter�a, we d�d not choose ultrav�olet germ�c�dal �rrad�at�on 
(UVGI) because v�ruses can be protected from UV rays 
by lurk�ng �n the shadows and because the UV rays are 
not very penetrat�ng, allow�ng a coat�ng of dust or other 
mater�al to protect v�ruses from the UV rays. UVGI �s 
more appropr�ate for a�r decontam�nat�on (F�rst, Rudn�ck, 
Banahan, et al. 2007; Rudn�ck & F�rst 2007). 

Hydrogen Peroxide Vapor Decontamination
We were unable to find any peer-rev�ewed publ�ca-

t�ons on surface decontam�nat�on of �nfluenza v�ruses 
us�ng HP at vapor concentrat�ons below 100 ppm. In 
the few publ�shed stud�es on surface decontam�nat�on of 
�nfluenza v�ruses at h�gher HP concentrat�ons, the dr�ed 
v�rus suspens�on was exposed to a relat�vely large dose 
of HP vapor; that �s, the HP vapor concentrat�on was 
relat�vely h�gh and exposure t�me relat�vely long. None 
of these stud�es gave results on v�rus �nact�vat�on versus 
dose. For example, the effect of HP vapor on surface-
depos�ted �nfluenza v�ruses was evaluated by Heckert, 
Best, Jordan, et al. (1997) at a HP vapor concentrat�on 
of about 1200 ppm and exposure t�me of about 30 m�n. 
Although Heckert, Best, Jordan, et al. showed an overall 
reduct�on of �nfluenza v�ruses of about 6 logs, wh�ch 
was the�r l�m�t of detect�on, only about 3 logs were at-
tr�butable to HP vapor; the rema�nder was due to 16 h 
of dry�ng at amb�ent cond�t�ons and heat exposure at 
30-40°C. Other stud�es us�ng �nfluenza as the challenge 
v�ruses had s�m�lar l�m�tat�ons. In a recent rev�ew art�cle, 
De Bened�ct�s, Beato, and Capua (2007) conclude that 
“reports on the spec�fic efficacy aga�nst av�an �nfluenza 
v�ruses of hydrogen perox�de are contrad�ctory, and for 
th�s reason add�t�onal �nformat�on on �ts v�r�c�dal efficacy 
�s necessary.”

Triethylene Glycol Vapor Decontamination
Although we were unable to find any publ�cat�ons on 

the use of TEG vapor to decontam�nate surfaces, �t has 
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been used to d�s�nfect a�r. Although other glycols can also 
be used to d�s�nfect a�r (Robertson, B�gg, M�ller, et al. 
1941; Robertson, Loosl�, Puck, et al. 1941), TEG vapor 
�s the most su�table because of �ts extremely low vapor 
pressure, wh�ch results �n very low a�r concentrat�ons. 
In add�t�on, TEG �n aerosol form �s commonly used for 
theatr�cal “smoke” such as �n venues for Broadway produc-
t�ons (Burr, Van G�lder, Trout, et al. 1994). As a result of 
th�s and other propert�es, TEG vapor �s bel�eved to do no 
harm to humans (EPA 2005a) or damage to env�ronmental 
surfaces (Lester, Kaye, Robertson, et al. 1950). There are 
a large number of journal publ�cat�ons, pr�mar�ly from 
the 1940s, on the use of TEG vapor for a�r d�s�nfect�on. 
TEG vapor has been shown to exert lethal act�on aga�nst 
a w�de var�ety of a�rborne �nfect�ous agents �nclud�ng 
bacter�a, v�ruses, and fung� (Lester, Kaye, Robertson, 
et al. 1950). In part�cular, TEG vapor was found to be 
an effect�ve decontam�nant agent for a�rborne �nfluenza 
v�ruses (Robertson, Puck, Lemon, et al. 1943). 

METHOD AND MATERIALS

Influenza Virus
Virus Stock. A frozen suspens�on of �nfluenza v�ruses 

(A/PR/8/34 H1N1) was purchased from Advanced B�o-
technolog�es (Columb�a, MD). It was thawed, d�v�ded 
�nto s�ngle-use packets, refrozen, and stored at −80°C 
unt�l needed. 

Virus Assay. A fluorescent focus reduct�on assay 
(Hartshorn, Wh�te, Tecle, et al. 2007) was used to 
measure the t�ter of v�rus suspens�ons before and after 
decontam�nat�on. Confluent monolayers of Mad�n-Darby 
can�ne k�dney (MDCK) cells were prepared �n 96-well 
plates. Each well was �noculated w�th 50 μL of coupon 
r�nsate (or ser�al d�lut�ons of the r�nsate) and �ncubated 
at 37°C for 45 m�n �n a 5% CO

2
 env�ronment. After 

wash�ng the �nfected cells us�ng assay med�a composed 
of Dulbecco’s Mod�fied Eagle’s Med�um (Med�atech, 
Herndon, VA) w�th 0.1% bov�ne serum album�n (BSA) 
(SeraCare, M�lford, MA), the cells were �ncubated for 7 
h at 37°C �n a CO

2
 env�ronment. After �ncubat�on, the 

cells were washed three t�mes w�th Dulbecco’s phosphate 
buffer sal�ne w�th calc�um and magnes�um (DPBS++) 
(Hyclone Laborator�es, Logan, UT) and fixed w�th an 
aqueous solut�on of 80% acetone for 10 m�n at 4°C. 
The �nfected MDCK cells were then labeled for 30 m�n 
at 4°C w�th 50 μL of nucleoprote�n ant�body solut�on, 
wh�ch was made by add�ng 50 μL of mouse monoclonal 
ant�bod�es (Centers for D�sease Control, Atlanta, GA, 
catalog #VS2366) to 5 mL of Dulbecco’s phosphate 
buffer sal�ne (DPBS) (Hyclone Laborator�es, Logan, 
UT) conta�n�ng 1% BSA, 1% heat �nact�vated human 
serum (Med�atech, Herndon, VA), and 0.02% sod�um 

az�de. After wash�ng three t�mes w�th DPBS, the cells 
were �ncubated w�th tagg�ng solut�on, wh�ch was made 
by add�ng 50 μL of rhodam�ne-labeled goat ant�-mouse 
IgG (Jackson ImmunoResearch Laborator�es, West Grove, 
PA, catalog #115026062) to 5 mL of DPBS conta�n�ng 
1% BSA, 1% heat �nact�vated human serum, and 0.02% 
sod�um az�de. The number of cells hav�ng a fluorescent 
foc�, wh�ch are referred to as fluorescent focus un�ts (FFU), 
were then counted us�ng an Olympus CKX-41 �nverted 
fluorescent m�croscope (Olympus, Center Valley, PA). 
Based on th�s assay, the t�ter of the s�ngle-use packets of 
�nfluenza v�rus suspens�on after be�ng thawed was about 
109 FFU/mL.

Preparation and Treatment of Test Surfaces
One-�nch by three-�nch sta�nless-steel coupons were 

used as test surfaces. For tests us�ng h�gher concentra-
t�ons of HP vapor or TEG vapor, 50 μL of �nfluenza v�rus 
suspens�on was seeded onto a predeterm�ned number of 
coupons. For lower decontam�nant concentrat�ons, the 
�nfluenza v�rus suspens�on was d�luted pr�or to be�ng 
seeded onto coupons. All of the coupons were placed 
�nto a b�olog�cal safety cab�net unt�l the depos�ted l�qu�d 
had evaporated. The requ�red dry�ng t�me was between 
20 and 30 m�n, depend�ng on amb�ent cond�t�ons. 
Some of these seeded coupons, wh�ch are referred to 
as “control” coupons, were left �n the b�olog�cal safety 
cab�net, where they cont�nued to be exposed to filtered 
room a�r at amb�ent cond�t�ons. The rema�n�ng seeded 
coupons (along w�th a clean coupon used as a negat�ve 
control) were placed �n an exposure chamber conta�n�ng 
HP vapor or TEG vapor. 

The coupons were removed from the exposure chamber 
after predeterm�ned exposure t�mes. The control cou-
pons that were left �n the b�olog�cal safety cab�net had 
no exposure to HP or TEG and, thus, were cons�dered 
to be unexposed coupons. Immed�ately after the last 
coupon was removed from the exposure chamber, each 
of the seeded coupons was r�nsed w�th DPBS++ us�ng 
the follow�ng procedure: The clearly marked port�on of 
the coupon where the v�ruses had been �n�t�ally depos-
�ted was r�nsed 25 t�mes w�th a s�ngle 500-μL port�on of 
DPBS++ us�ng a p�pette. No v�s�ble res�due rema�ned. A 
fluorescent focus reduct�on assay was then done on the 
r�nsate and/or d�luted r�nsate from each coupon. Only 
about 50% of the �nfluenza v�ruses that were seeded onto 
the control sl�des were recovered.

Exposure Chamber and Test Methodology
Hydrogen Peroxide Vapor Tests. Tests �n wh�ch 

�nfluenza v�ruses depos�ted on sta�nless-steel coupons 
were exposed to HP vapor were done �n a 130-L cub�-
cal plex�glass chamber located w�th�n a laboratory fume 
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hood. A shallow pool of an aqueous solut�on of 35% 
HP (VWR, West Chester, PA), d�luted w�th water to 
a predeterm�ned HP concentrat�on that was calculated 
to prov�de the des�red HP vapor concentrat�on, covered 
much of the floor area of the chamber. Pred�ct�on of the 
HP concentrat�on �n an aqueous solut�on requ�red for a 
spec�fic HP vapor concentrat�on was based on publ�shed 
correlat�ons (Schumb, Satterfield & Wentworth 1955). 

The a�r �ns�de the chamber was kept well m�xed through 
the use of two small fans. To ma�nta�n the des�red rela-
t�ve hum�d�ty (RH), 17 L/m�n of dry a�r was added to 
the chamber. Temperature and RH were mon�tored and 
recorded every 30 s us�ng a HOBO (Onset Computer 
Corp., Buzzards Bay, MA). RH and temperature were also 
measured per�od�cally w�th a hygrometer (Omega Eng�-
neer�ng, Stamford, CT) and mercury thermometer.

HP vapor concentrat�on was mon�tored cont�nuously 
and data logged us�ng a newly purchased, cal�brated ATI 
C16 PortaSenII w�th a hydrogen perox�de sensor (Analyt�-
cal Technology, Collegev�lle, MD), wh�ch has a measure-
ment range of 0 to 100 ppm HP vapor. The cal�brat�on 
was done on 9/6/07, d�rectly before our exper�mental 
tests began; the manufacturer stated that the cal�brat�on 
had ±10% accuracy. D�rectly after our exper�mental tests 
were completed (1/30/08), the �nstrument was sent back 
to the manufacturer to be re-cal�brated. The �nstrument 
was read�ng 17% h�gher than �t should have been—aga�n, 
w�th�n ±10% accuracy. Nevertheless, w�th�n the accuracy 
of the cal�brat�on method, the �nstrument’s cal�brat�on 
rema�ned stable dur�ng our exper�mental tests. 

After a constant HP vapor concentrat�on had been 
reached �n the exposure chamber, test coupons were 
�nserted �nto the chamber through a vert�cally open�ng 
sl�d�ng door. When �nsert�ng test coupons, the door was 
l�fted only very sl�ghtly so that the HP vapor concentra-
t�on would rema�n essent�ally constant. 

Triethylene Glycol Vapor Tests. Tests �n wh�ch 
�nfluenza v�ruses depos�ted on sta�nless-steel coupons 
were exposed to TEG vapor were also done �n the same 
well-m�xed 130-L cub�cal plex�glass chamber used for the 
HP vapor tests. Greater care, however, was taken to seal 
the chamber, and dry a�r was not added to the chamber. 
A shallow pool of 99% pure l�qu�d TEG (VWR, West 
Chester, PA) covered much of the floor area of the cham-
ber. A beaker of water was placed w�th�n the chamber �n 
order to help ma�nta�n a reasonably constant RH. If the 
beaker of water was not present, the RH �n the chamber 
would decrease over t�me because TEG �s very hydroscop�c. 
Temperature and RH were mon�tored and recorded every 
30 s us�ng a HOBO (Onset Computer Corp., Buzzards 
Bay, MA). RH and temperature were also measured 
per�od�cally w�th a hygrometer (Omega Eng�neer�ng) 
and mercury thermometer. After equ�l�br�um cond�t�ons 

had been ach�eved, test coupons were �nserted �nto the 
chamber by m�n�mally open�ng a vert�cally sl�d�ng door. 
The coupons were �nserted as qu�ckly as poss�ble so as to 
m�n�m�ze d�srupt�on of equ�l�br�um cond�t�ons.

The concentrat�on of TEG vapor was not measured. 
Because we allowed a large pool of nearly pure l�qu�d 
TEG located on the floor of the well-m�xed exposure 
chamber to reach equ�l�br�um w�th the gas phase, the a�r 
was essent�ally saturated w�th TEG, and the part�al pres-
sure ( TEGp ) of TEG was approx�mately equal to �ts vapor 
pressure ( o

TEGP ). TEG vapor pressure can be calculated 
from the Anto�ne equat�on (NIST 2005):
   (1)

where vapor pressure �s �n bars and temperature (T) �s 
�n degrees Kelv�n. Based on Equat�on 1, the vapor pres-
sure of TEG at 25°C �s 0.00131 mm Hg1, wh�ch �s �n 
nearly perfect agreement w�th the value of 0.00132 mm 
Hg at 25°C g�ven by the EPA (2005a). The TEG mole 
fract�on ( TEGy ) �n the gas phase can be calculated from 
Dalton’s law: 
  

(2)

where P �s amb�ent pressure. In actual�ty, because l�qu�d 
TEG �s so hydroscop�c, the pool of TEG on the chamber 
floor would tend to become d�luted w�th water over t�me 
so that the mole fract�on of TEG vapor would be some-
what less than 1.7 ppm. However, because the amount of 
l�qu�d TEG �n the chamber was relat�vely large, d�lut�on 
would not be expected to have a very s�gn�ficant effect 
on the TEG vapor concentrat�on.

Tests of Natural Die Off Rate. Our normal meth-
odology for evaluat�ng the loss of v�rus act�v�ty over t�me 
�nvolved seed�ng 50 μL of �nfluenza v�rus suspens�on 
onto each of the coupons that were to be used dur�ng an 
exper�mental test. All v�rus assays for an exper�mental test 
were then done at the same t�me and, when poss�ble, �n 
the same 96-well plate. Because grow�ng and ma�nta�n�ng 
cells �s somewhat of an art, perform�ng all assays for an 
exper�mental test at the same t�me �s �mportant �n order 
to get cons�stent results. 

For tests to measure the natural d�e-off rate of �nflu-
enza v�ruses, th�s methodology could not be used because 
the durat�on of the test was too long, so an alternat�ve 
procedure was employed. In preparat�on for an exper�-
mental test to measure the natural d�e-off rate of �nfluenza 
v�ruses, s�ngle-use packets of �nfluenza v�rus suspens�on 

1Although Equat�on 1 was spec�f�ed for a temperature range that 
d�d not �nclude 25°C, �t pred�cted the same vapor pressure at 25°C 
as was g�ven by the EPA (2005a).
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were thawed, separated �nto 200-μL port�ons, and then 
re-frozen at –80°C. At the start of a natural d�e-off test, 
one of these 200-μL port�ons was thawed, and then each 
of three sta�nless-steel coupons was seeded w�th 50 μL 
of v�rus suspens�on pr�or to be�ng exposed to amb�ent 
cond�t�ons �n a small chamber w�thout a decontam�na-
t�on agent present. After a predeterm�ned amount of 
t�me, another 200-μL port�on was thawed, and three 
add�t�onal coupons were seeded and then exposed to 
amb�ent cond�t�ons. Th�s procedure was repeated mul-
t�ple t�mes. At the end of the test, the v�rus res�due on 
each coupon was extracted us�ng our standard method, 
and each extract�on was assayed at the same t�me and �n 
the same plate. 

Calculations 
The number of fluorescent focus un�ts (FFU) per 

volume of coupon r�nsate �s a measure of the quant�ty 
of cultureable v�ruses present on the coupon. The rat�o 
of the number of FFU per volume �n the r�nsate from an 
exposed coupon (U) to the number from an unexposed 
coupon (U

o
) �s defined as the fract�on of v�ruses rema�n-

�ng act�ve (-f-):
 

oU
Uf =  (3)

For cultureable v�ruses, the number of log reduct�ons 
(n) �s equal to the d�fference between the logar�thm of 
the �n�t�al FFU per volume and the logar�thm of the final 
FFU per volume: 
 fUUn o logloglog −=−=   (4)

where the logar�thms are to the base 10. Thus, n = 4 
corresponds to 4 log reduct�ons, wh�ch �s equ�valent to 
0.01% of the v�ruses rema�n�ng act�ve and 99.99% of the 
v�ruses �nact�vated; that �s, start�ng w�th 10,000 FFU �n 
the r�nsate from an unexposed coupon, only one would 
rema�n �n the r�nsate from the exposed coupon. 

Because three coupons were exposed and three were 
not exposed dur�ng a spec�fic t�me per�od, the unexposed 
and exposed coupons could not be separated �nto pa�rs. 
Therefore, the mean number of log reduct�ons ( n ) was 
calculated from Equat�on 5: 
 UUn o loglog −=  

where oUlog  and Ulog  are the means of the logar�thms 
of U

o
 and U, respect�vely. The standard dev�at�on ( ns ) 

correspond�ng to n  can be calculated from the standard 
dev�at�on of log U

o
 (

oUs log ) and the standard dev�at�on 
of U ( Us log ):
 2

log
2
log

2
UoUn sss +=    

In figures �n wh�ch the number of log reduct�ons  
( n ) �s plotted versus t�me, the error bars correspond to 

±1 standard dev�at�on (s
n
), as g�ven by Equat�on 6.

Based on 109 FFU/mL for the �nfluenza v�rus suspen-
s�on �n a s�ngle-use packet and 50% recovery of v�ruses 
from control sl�des, the theoret�cal l�m�t of detect�on 
�n terms of the number of log reduct�ons that could be 
detected by the methods descr�bed above was calculated 
to be 7.4. Th�s calculat�on �s based on the assumpt�on 
that a s�ngle FFU detected from any of the three coupons 
exposed at a spec�fic test cond�t�on corresponds to the 
l�m�t of detect�on. 

RESULTS

Hydrogen Peroxide Vapor Decontamination
The number of log reduct�ons based on Equat�on 5 

versus exposure t�me for tests �n wh�ch �nfluenza v�ruses 
depos�ted on sta�nless-steel coupons were exposed at 
approx�mately 25°C and 58-65% RH to relat�vely low 
concentrat�ons of HP vapor �s shown �n F�gure 1. In th�s 
figure, error bars correspond to ± one standard dev�at�on, 
based on Equat�on 6. Even at a HP vapor concentrat�on 
as low as 10 ppm, about a two-log reduct�on was observed 
after 2.5 m�n of exposure. The reduct�on, however, d�d 
not �ncrease as much as would be expected w�th �ncreases 
�n e�ther exposure t�me or HP vapor concentrat�on. If 
a HP vapor concentrat�on of 10 ppm and an exposure 
t�me of 2.5 m�n are taken as the base, �ncreas�ng exposure 
t�me by a factor of s�x or concentrat�on by a factor of 
n�ne added only an extra 1.6 and 1.3 logs of reduct�on, 
respect�vely. For 15 m�n of exposure t�me, the h�ghest 
measured decontam�nat�on rate was 4.7 log reduct�ons 
at a HP vapor concentrat�on of 90 ppm. An add�t�onal 
test, not shown �n F�gure 1, �n wh�ch �nfluenza v�ruses 
were exposed at a HP vapor concentrat�on of 57 ppm 
for 60 m�n, resulted �n a decontam�nat�on rate of 5.6 
log reduct�ons.

Triethylene Glycol Vapor Decontamination
The number of log reduct�ons based on Equat�on 

5 as a funct�on of exposure t�me for tests �n wh�ch 
�nfluenza v�ruses depos�ted on sta�nless-steel coupons 
were exposed to a�r saturated w�th TEG at 25-29°C 
and 45-55% RH �s shown �n F�gure 2. Based on Equa-
t�ons 1 and 2, the concentrat�on of TEG vapor �n these 
tests was equal to between 1.7 and 2.5 ppm. Error bars 
�n F�gure 2 correspond to ± one standard dev�at�on, 
based on Equat�on 6. The number of log reduct�ons 
(n) versus exposure t�me (t) follows a l�near relat�on-
sh�p reasonably well. The relat�onsh�p �s g�ven by the 
follow�ng equat�on:
 n-= 1.31t (7)
where exposure t�me �s �n hours. Thus, the decontam�na-
t�on rate attr�butable to TEG vapor was 1.3 log reduct�ons 

(5)

(6)
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Figure 1. Surface decontamination of influenza viruses with hydrogen peroxide vapor 
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Figure 2. Surface decontamination of influenza 
viruses with triethylene glycol saturated air 

per hour. Equat�on 7 �s equ�valent to Equat�on 8, the 
equat�on for exponent�al decay of the fract�on of v�ruses 
rema�n�ng act�ve ( f ) :

    f-= exp(–3.02t) (8)

Viability Tests at Ambient Conditions
For purposes of compar�son w�th chem�cal decontam�-

nat�on tests, the natural d�e-off rate at amb�ent cond�t�ons 
of �nfluenza v�ruses depos�ted on sta�nless-steel coupons 
was measured. The number of log reduct�ons versus t�me 
for two separate tests, each last�ng a few days, �s plotted 
�n F�gure 3. 

Error bars �n th�s figure correspond to ± one standard 
dev�at�on based on Equat�on 6. No decontam�nat�on 
agent was used dur�ng these tests. Based on the data 
po�nts from both tests, the number of log reduct�ons 
(n) versus exposure t�me (t) follows a l�near relat�onsh�p 
g�ven by Equat�on 9:
 tn 0829.0=   (9)
where exposure t�me �s �n hours. Thus, the natural decay 
rate of �nfluenza v�ruses was 0.083 log reduct�ons per 
hour, wh�ch �s equ�valent to a half-l�fe of 3.6 h. 
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DISCUSSION

Hydrogen Peroxide Vapor Decontamination
Test results on the decontam�nat�on of �nfluenza v�ruses 

us�ng HP vapor at concentrat�ons less than 100 ppm (F�g. 
1) are somewhat surpr�s�ng �n that the number of log 
reduct�ons �n act�ve v�ruses versus exposure t�me �s very 
non-l�near; that �s, the fract�on of v�ruses rema�n�ng act�ve 
versus exposure t�me does not follow an exponent�al decay 
curve. As the exposure t�me �ncreases, the log reduct�on 
rate decreases s�gn�ficantly; thus, as shown �n F�gure 1, 
the number of log reduct�ons for the �n�t�al 2.5 m�n of 
exposure �s greater than the number of log reduct�ons 
from 2.5 to 15 m�n of exposure. Th�s trend �s true for all 
HP vapor concentrat�ons evaluated. For example, at a HP 
vapor concentrat�on of 10 ppm, the lowest concentra-
t�on tested, the number of log reduct�ons was 2.0, 3.1, 
3.4, and 3.6 after 2.5, 5, 10, and 15 m�n of exposure, 
respect�vely. S�m�larly, at a HP vapor concentrat�on of 
90 ppm, the h�ghest concentrat�on tested, the number 
of log reduct�ons was 3.2, 4.5, and 4.7 after 2.5, 10, and 
15 m�n of exposure, respect�vely. 

Another unexpected outcome of these tests was that, 
�n the �n�t�al 2.5 m�n of exposure to 10 ppm HP vapor, 
the number of log reduct�ons was equal to two, wh�ch �s 
a 99% v�rus reduct�on. If the number of log reduct�ons 
at 10 ppm HP vapor versus exposure t�me was l�near, 
15 m�n of exposure would result �n ster�l�zat�on (12 
log reduct�ons). Instead, due to the nonl�near�ty of the 
curves, after 15 m�n of exposure to 10 ppm HP vapor, 
only 3.6 log reduct�ons were measured. Nevertheless, 
th�s �s a s�gn�ficant reduct�on for such a low HP vapor 
concentrat�on. The Threshold L�m�t Value (TLV®) and 
OSHA-perm�ss�ble exposure l�m�t (PEL) for occupat�onal 
HP vapor exposure �s an e�ght-hour t�me-we�ghted average 

of 1 ppm (ACGIH 2008; OSHA 2008). Th�s suggests 
that 10 ppm of HP vapor �s a relat�vely safe concentrat�on 
over a short t�me per�od, although the TLV �ncludes the 
caveat that HP vapor �s a “confirmed an�mal carc�nogen 
w�th unknown relevance to humans.”

Triethylene Glycol Vapor Decontamination
D�v�d�ng Equat�on 7 by Equat�on 9 �nd�cates that 

TEG vapor �ncreases the natural d�e-off rate of �nfluenza 
v�ruses by a factor of 16. The decontam�nat�on rate for 
a�r saturated w�th TEG vapor at 25-29°C, wh�ch was 
measured to be 1.3 log reduct�ons per hour, �s cons�der-
ably less than for HP vapor (F�g. 1), even at a concentra-
t�on of 10 ppm. For example, for a 15-m�nute exposure 
per�od, the decontam�nat�on rate for TEG vapor was 
0.33 log reduct�ons, compared to 3.6 log reduct�ons for 
HP vapor. Nevertheless, TEG vapor has some �mportant 
advantages. 

For surface decontam�nat�on us�ng TEG vapor, am-
b�ent a�r or warmed a�r could eas�ly be saturated w�th 
TEG pr�or to be�ng �ntroduced �nto an a�rplane cab�n. 
Alternat�vely, m�crometer-s�ze TEG droplets, wh�ch 
evaporate rap�dly, could be �njected �nto the supply a�r 
duct or d�rectly �nto the cab�n a�r. The standard method 
for �ntroduc�ng TEG droplets �nto a�r for the purpose of 
a�r decontam�nat�on �s through the use of a pressur�zed 
l�qu�d (EPA 2005a), although a nebul�zer could also be 
used. If a pandem�c were to occur, both surface and a�r 
decontam�nat�on could take place s�multaneously, even 
wh�le passengers were onboard.

Although an object�on could be ra�sed due to the 
potent�al health r�sk of us�ng TEG vapor for a�r decon-
tam�nat�on, th�s �s l�kely an unwarranted concern because 
TEG �s an odorless chem�cal of no known tox�c�ty, and 
exposure of people to TEG �s already w�despread. TEG 
vapor �s used as a bacter�ostat to k�ll odor-caus�ng bacter�a 
for the purpose of a�r san�tat�on and deodor�zat�on. It was 
first reg�stered for use �n hosp�tals as an a�r d�s�nfectant �n 
1947. Present appl�cat�on scenar�os �nclude spray�ng TEG 
�ns�de offices, schools, hotels, lobb�es, theaters, recept�on 
rooms, sleep�ng rooms, bathrooms, and hosp�tal rooms 
(EPA 2005b). In add�t�on, products conta�n�ng TEG 
packaged �n aerosol cans and des�gned to be sprayed �nto 
the a�r �ns�de homes to control odors are sold �n stores 
everywhere (e.g., Oust® and Febreze®).

Accord�ng to the U.S. Env�ronmental Protect�on 
Agency (EPA 2005a), “the Agency has no r�sk concerns 
for tr�ethylene glycol w�th respect to human exposure. 
Based on a rev�ew of the ava�lable tox�cology data, the 
Agency has concluded that tr�ethylene glycol �s of very 
low tox�c�ty by the oral, dermal, and �nhalat�on routes 
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of exposure. The tox�cology database �s adequate to 
 character�ze the hazard of tr�ethylene glycol, and no data 
gaps have been �dent�fied. There are no �nd�cat�ons of 
spec�al sens�t�v�ty of �nfants or ch�ldren result�ng from 
exposure to tr�ethylene glycol.” In add�t�on, TEG has 
no known deleter�ous effects on fabr�cs or other surfaces 
(Lester, Kaye, Robertson & Dunkl�n 1950). Unl�ke HP 
vapor, TEG vapor �s not an ox�d�z�ng agent. TEG �nact�-
vates v�ruses and bacter�a because �t �s very hydroscop�c; 
�t condenses on bacter�a- and v�rus-conta�n�ng part�cles 
unt�l the TEG concentrat�on becomes suffic�ently h�gh to 
be germ�c�dal (Puck, T.T. 1947a; Puck, T.T. 1947b). 

To demonstrate the effect�veness of s�multaneous 
surface and a�r decontam�nat�on, m�crob�olog�cal stud�es 
need to be conducted �n a room-s�ze chamber us�ng both 
v�ruses and bacter�a as challenges. Methods also need to 
be developed to mon�tor TEG vapor concentrat�on so 
that TEG �ntroduct�on can be prec�sely controlled.

It �s reasonable to expect that the efficacy of TEG vapor 
w�ll �ncrease as �ts concentrat�on �s �ncreased. However, at 
25°C, the concentrat�on of TEG �n a�r cannot exceed 1.7 
ppm because a�r �s saturated at that concentrat�on. The 
only way of �ncreas�ng the concentrat�on �s to �ncrease 
temperature. As shown �n Table 1, wh�ch was calculated 
from Equat�ons 1 and 2, modest �ncreases �n temperature 
result �n s�gn�ficant �ncreases �n TEG vapor concentra-
t�on. Thus, further work �nvest�gat�ng TEG vapor as a 
decontam�nat�ng agent �s warranted. Spec�fically, the 
effect�veness of TEG vapor for surface decontam�na-
t�on at h�gher concentrat�ons—that �s, at temperatures 
greater than room temperature—should be determ�ned. 
In add�t�on, the �nfluence of RH on decontam�nat�on 
effect�veness should also be evaluated.

CONCLUSIONS

Our exper�ments show that HP vapor concentrat�ons as 
low as 10 ppm and TEG vapor concentrat�ons of 2 ppm 
can prov�de effect�ve decontam�nat�on of a commerc�al 
a�rplane cab�n. At these very low concentrat�ons, the 
potent�al for damage to the mechan�cal components or 
av�on�cs of the a�rplane would be expected to be m�n�mal. 
Although �t has somewhat lower efficacy than 10 ppm HP 
vapor, a�r saturated w�th TEG vapor at 25°C �s probably 
the better cho�ce for decontam�nat�on of a�rplane cab�ns; 
TEG �s safer w�th regards to both personnel and a�rplanes 
and �s eas�er to apply. If TEG vapor �s determ�ned to be a 
v�able cand�date for decontam�nat�on of a�rplane cab�ns, 
opt�m�z�ng temperature and RH would l�kely lead to 
greater efficacy.
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